Kerala State Disaster Management Authority

Training Program Report - March 21st 2022

Training Title	:	Application of Remote Sensing For Disaster Management		
Presented by	:	Consultant Disaster Management, KSDMA		
Resource Person	:	Dr. Karunakaran Akhil Dev		
Mode of meeting	:	Online Training		
Platform	:	Google Meet		
Link and Schedule	tule : https://meet.google.com/fgo-rspo-wke			
Audience	:	Public		
Date of Meeting	:	21/03/2022		
Timing	:	11:30 AM to 1:00 PM		
Welcome Addressed :		Mr. Clint Mathew, Social Capacity Building Specialist		

Officials Present

- 1. Dr. Sekhar L. Kuriakose, Member Secretary, KSDMA
- 2. Mr. Joe George State Project Officer KSDMA

:

- 3. Mr. Pradeep G.S Hazard Risk Analyst, KSEOC
- 4. Mr. Clint Mathew, Social Capacity Building Specialist

Brief of the training :

The training was conducted for public, to provide insights on applications of remote sensing for Disaster Management. The program was presented online for public awareness and reach. The training was conducted by the resource person interactive session and consisted college, university students, government officials, public of Kerala State. Total slides were 99 from Cover Slide/ Title Slide to the end slide thank you slide (Appendix I). Total participants for the program was 38 (Table 1.).

General Questions addressed

- 1) Do we have any remote sensing satellite onboard placed that penetrates into earth for earth core studies?
- 2) What level of remote sensing technique required or suitable for Kerala region?
- 3) Policy level change needed for provision of Remote Sensing data for free for government departments?
- 4) How to channelize and need of Digital Elevation Model in temporal scales, we onlyrely on single year DEM data for model, please comment?

Conclusion:

The perspectives of disasters, disaster management, basics of remote sensing, utility of remote sensing for different disasters, assessment mechanism, techniques of RS was rendered through this program (Appendix I).

SI.No	First name	Last name	
1	ANI		
2	Shalikh		
3	Supriya	Baburaj M	
4	Agina	Chandran	
5	Pratheesh	C Mammen	
6	afra	ср	
7	Joe John	George	
8	Gauri	Ghosh	
9	Dr. Karunakaran Akhil Dev		
10	Shalikh		
11	Supriya	Baburaj M	
12	Agina	Chandran	
13	Pratheesh	C Mammen	
14	afra	ср	
15	Amrutha	Kolangad	
16	DEOC	КОТТАҮАМ	
17	Member Secretary	KSDMA	
18	clint	mathew	
19	Asha V K	Menon	
20	Noushaba	Nas	
21	Prem G	Prakash	
22	Praveen	PU	
23	Vijeesh	Pulparambil	
24	Remya	R	
25	Gowtham	Raj	
26	Hazard and	Risk Analyst SEOC	
27	Ruksana	Salim	
28	Aiswarya	Sathianadhan	
29	Ahmed	Shafeeque	
30	Arunlal	sudakaran	
31	syam	sunny	
32	Adharv	Suresh	
33	Rajeev	t.r	
34	neethu	thomas	
35	JOHN RICHARD	THOMAS	
36	Basil	Varkey	
37	Shinu Sheela	Wilson	
38	FAHEED		

Table 1. List of Participants/ Attendees

Appendix I - Slides Presented

Application of Remote Sensing forDisaster Management

Myself

Dr. Karunakaran Akhil Dev

Consultant Disaster Management

Kerala State Disaster Management Authority

karunakaranakhildev@gmail.com 9847231604 Phone:

Government of Kerala

Thiruvananthapuram , Kerala, India - 695033

1

Only insight

Contents

1	Disasters, Disaster Management				
2	Remote Sensing (RS), Satellite, Types, Sensors, RS Data Types				
3	Agencies for Remote Sensing Data				
4	Disaster Management Phases & Remote Sensing Utility				
5	Some Disasters & Remote Sensing Utility				
0	Advantages and Disadvantages of Remote sensing				
7	Questions ?				

Definitions

a sudden accident or a natural catastrophe that causes great damage or loss of life Oxford Dictionary

A disaster is an occurrence disrupting the normal conditions of existence and causing a level of suffering that exceeds the capacity of adjustment of the affected community WHO

Any catastrophe, mishap, calamity or grave occurrence in any area, arising from natural or man made causes, or by accident or negligence which results in substantial loss of life or human suffering or damage to, and destruction of, property, or damage to, or degradation of, environment, and is of such a nature or magnitude as to be beyond the coping capacity of the community of the affected area

The Disaster Management Act, 2005

1

karunakaranakhildev@gmail.com Phone:

Types of Disaster

Based on Origin it is divided into two

Natural: Geological, water and climate related and biological *Man made:* Accident related, chemical industrial and nuclear

Based on Nature it is divided into three

- **1. Rapid** : Cyclone, fire, Earthquake, Landslides.
- **2. Rapid /slow** : War, Epidemic, civil unrest.
- **3. Slow** : Drought, Desertification, and Pollution.

Categories of Disaster

Category 1- Hydro Meteorological Disasters.

- a) Flood
- b) Drought
- c) Costal erosion
- d) Thunder and Lightening
- e) Cyclone and Storms etc.

Category 2- Geologically Related Disasters

- a) Landslides and Mudflows
- b) Earthquakes
- c) Dam failures
- d) Tsunami

(KSDMA Policy, 2010)

Categories of Disaster

Category 3- Chemical Industrial and Nuclear Related Disasters

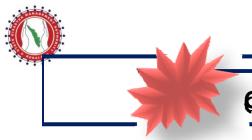
- a) Leakage of hazardous materials at the time of their manufacture,
- processing and transportation. Disasters due to manufacture, storage, use and transportation of products,
- b) Pesticides etc and waste produced during the manufacturing process etc.

Category 4- Biological Related Disasters

- a) Epidemics
- b) Cattle epidemics
- c) Fish diseases
- d) Pest attacks etc

(KSDMA Policy, 2010)

m)


Categories of Disaster

Category 5- Man-Made Disasters

- a) Forest fire
- b) Urban fire
- c) Village fire
- d) Festival related disasters
- e) Road, Rail and Air Accidents
- f) Boat capsizing
- g) Oil spill
- h) Major building collapse
- i) Serial Bomb blast
- j) Illicit Liquor Tragedy
- k) Drug abuse

- I) Drowning
 - Tanker lorry mishaps
- n) Pollution (water, air and soil)
- o) Family suicides
- p) Environmental disasters
- q) Communal riots
- r) Stampede etc

(KSDMA Policy, 2010)

Disasters

çan also be Classed into

Westen C.V., 2000

Natural disasters

Events caused purely natural phenomena and bring damage to human societies.

Ex: Earthquakes, volcanic eruptions, hurricanes

Human-made disasters

Events which are caused by human activities. Ex: atmospheric pollution, industrial chemical accidents, major armed conflicts, nuclear accidents, oil spills

Human-induced disasters

are natural disasters that are accelerated/aggravated by human influence

Classification of disaster in a gradual scale between purely natural and purely human -made

Natural	Some human	Mixed natural /human	Some natural	Human
	influence	influence	influence	
Earthquake	Flood	Landslides	Crop disease	Armed conflict
Tsunami	Dust storm	Subsidence	Insect infestation	Land mines
Volcanic eruption	Drought	Erosion	Forest fire	Major (air-, sea-, land-)
Snow storm / avalanche	-	Desertification	Mangrove decline	traffic accidents
Glacial lake outburst		Coal fires	Coral reef decline	Nuclear / chemical
Lightning		Coastal erosion	Acid rain	accidents
Windstorm		Greenhouse effect	Ozone depletion	Oil spill
Thunderstorm		Sealevel rise		Water / soil / air
Hailstorm Tornado				pollution
Cyclone/ Hurricane				Groundwater pollution
Asteroid impact				Electrical power
Aurora borealis				breakdown
				Pesticides

Westen C.V., 2000

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000

Disaster Management (DM) ?

Disaster Management (DM)

Definitions

A continuous and integrated process of planning, organizing, coordinating and implementing measures which are necessary or expedient for-

(i) Prevention of danger or threat of any disaster;

(ii) Mitigation or reduction of risk of any disaster or its severity or consequences;

(iii) Capacity-building;

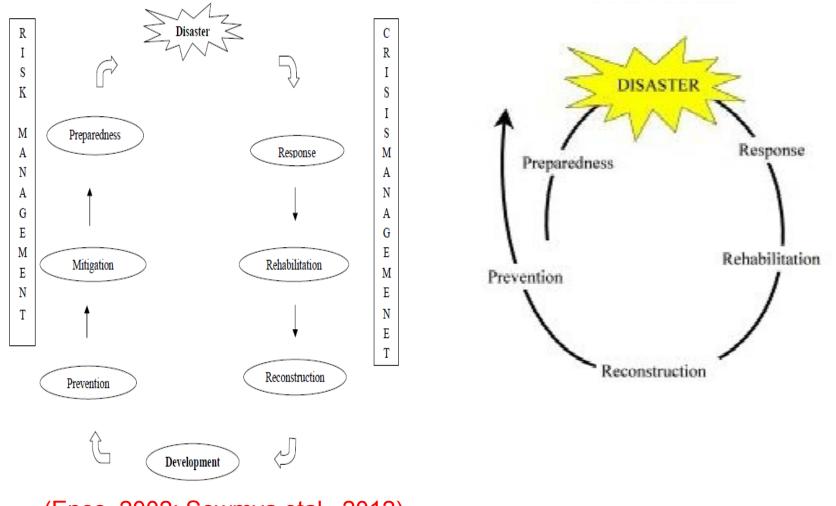
(iv) Preparedness to deal with any disaster;

(v) Prompt response to any threatening disaster situation or disaster;

(vi) Assessing the severity or magnitude of effects of any disaster;


(vii)Evacuation, rescue and relief;

(viii) Rehabilitation and reconstruction


The Disaster Management Act, 2005

DM Cycle

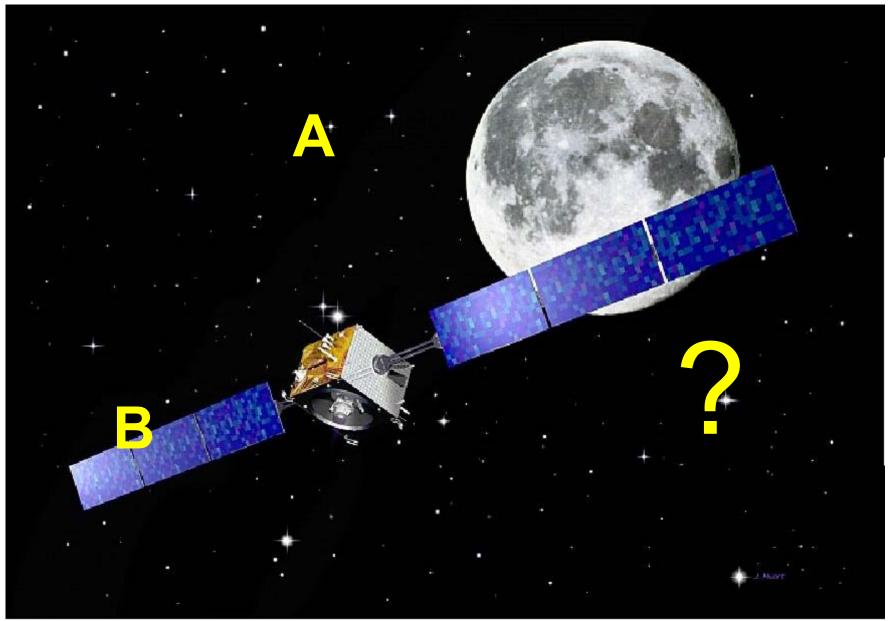
13

DM Cycle

(Enos, 2002; Sowmya etal., 2012)

Remote Sensing? Remote Sensing?

Definition


Remote Sensing is defined as the science and technology by which the characteristics of objects of interest can be identified, measured or analyzed the characteristics without direct contact.

Phone: 9847231604

It is a technology for sampling electromagnetic radiation to acquire and read non-immediate geospatial data from which to pull info more or less features and objects on his Earths land surface, seas, and air.

karunakaranakhildev@gmail.com Phone: 9847231604

Satellite ?

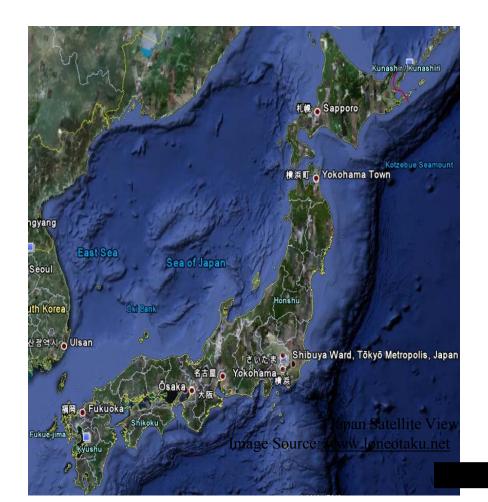
An eye in the sky that does not tell lie

Satellite

Artificial Satellite

refers to a machine that is launched into space and moves around Earth or another body in space.

A satellite is an object that has been intentionally placed into orbit. These objects are called artificial satellites to distinguish them from natural satellites such as Earth's Moon.


NASA

Satellite pictures

Satellite imagery consists of photographs from which collected by satellites.

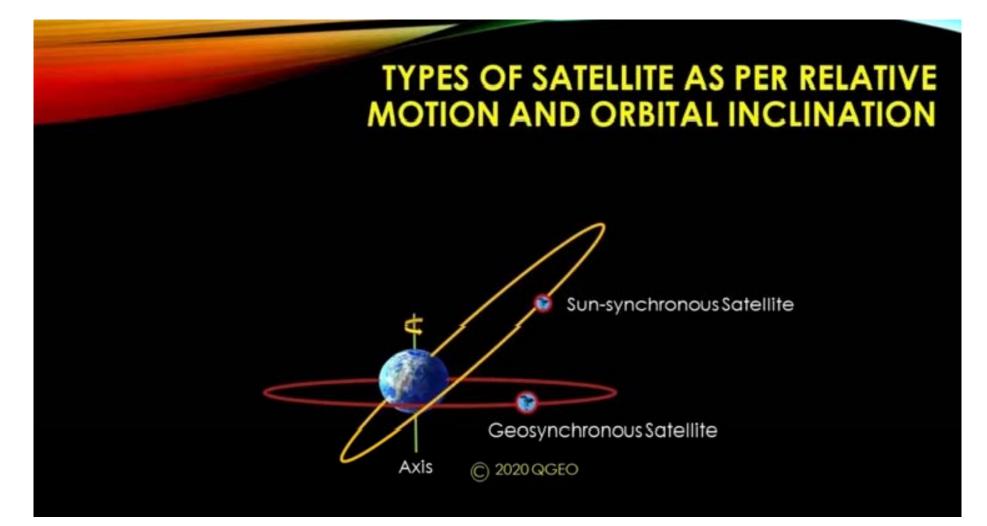


Image Source: www.wonderwhizkids.com

Geostationary

Satellites

A geostationary satellite is one of the satellites which is getting remote sense data and located satellite at an altitude of approximately 36000 kilometres and directly over the equator.

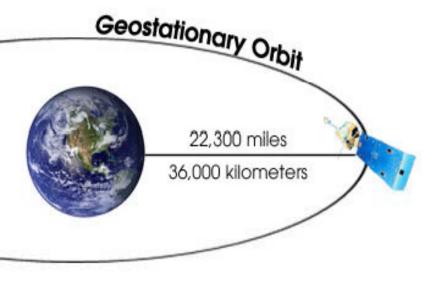
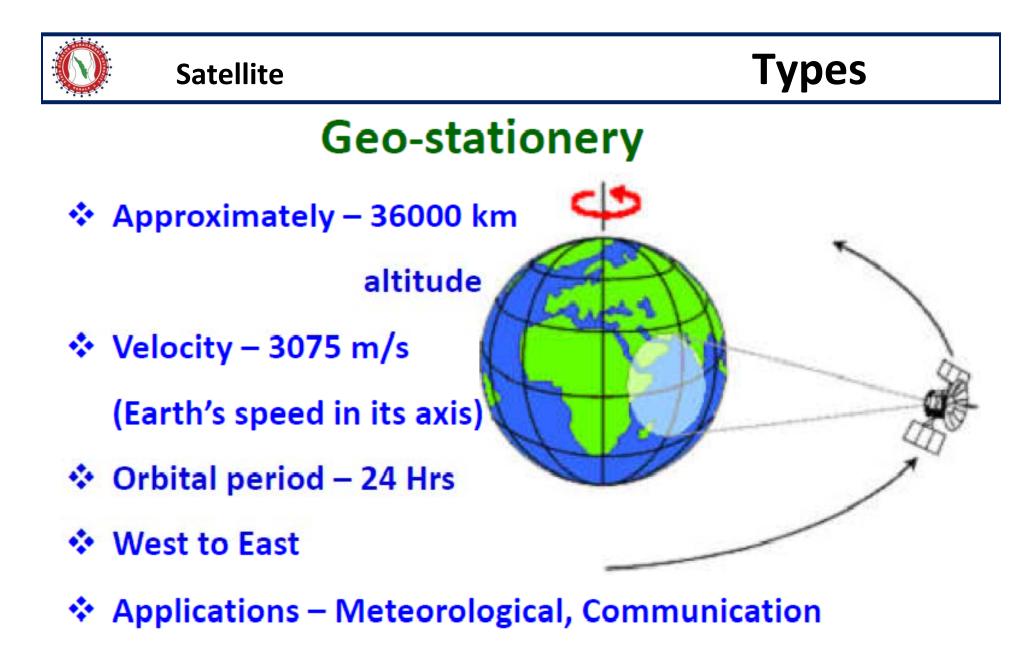



Image Source: cimss.ssec.wisc.edu

Example: INSAT

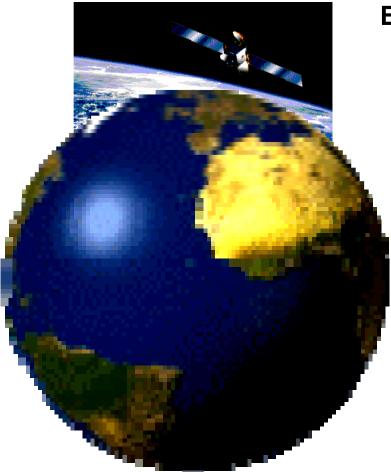
Phone: 9847231604

Sun Synchronous

Lower altitude – 817 km
 High resolution
 Example
 IRS – 1C

Polar-Orbiting Satellites

A polar orbit is a satellite which is located near to above of poles. This satellite mostly uses for earth observation by time.



mage Source: globalmicrowave.org

Satellite

Types

Earth Observation Satellite

Planetary Satellites

Sensors

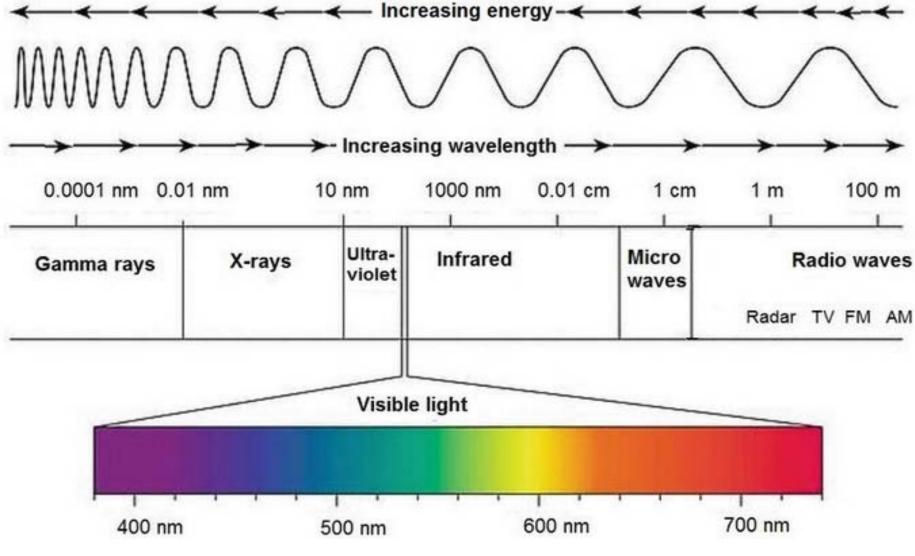
Types of Sensor:

Passive sensors

Active sensors

Own source

Other source


Example Camera without flash Camera with flash

Remote Sensing Systems

Electro Magnetic Spectrum

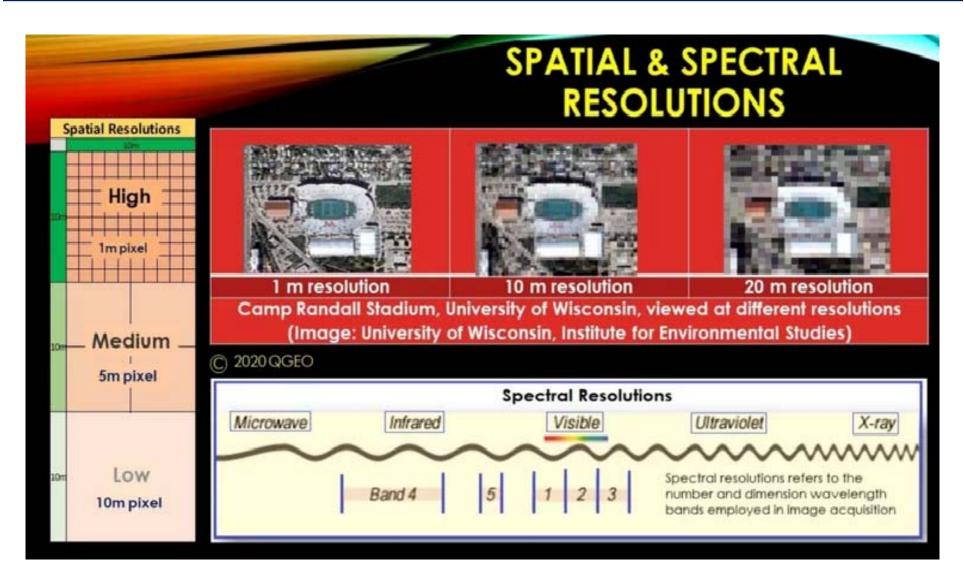
UC Davis ChemWiki, CC-BY-NC-SA 3.0

Electro Magnetic Spectrum

- 0.4 μ m 0.7 μ m visible range
- $1 \ \mu m 0.1 \ mm$ infrared
- 10 mm microwave
- 1 m and above radio wave
- 10⁻² µm 0.4 ultra violet
- 10⁻⁴ μ m to 10⁻² μ m X-ray
- Less than 10⁻⁴ μ m Gamma ray

Sensors

A **sensor** is a device, machine, or subsystem use to take observation of and send the information to other electronic circuitry linked with it.


quality of a sensor depends upon the performance & **resolutions**

Spatial Resolutions: Spectral Resolutions Temporal Resolutions

Radiometric Resolutions

Sensors

According to the energy source

Active sensor:

The sensor which detects the reflected response from target objects which are irradiated from an artificial source.

Ex. RADAR (Radio Detection and Ranging) LIDAR (LIGHT Detection and Ranging) or camera with flashlight.

Passive Sensor:

The sensor detects the reflected or emitted electromagnetic radiation from a natural source.

Ex. All remote sensing sensors or cameras without flashlight when take photographs in daylight.

Other Sensor: Some other sensors are used for the different purposes of remote sensing. They are a Panoramic Camera, Microwave Radiometer, and optical scanner.

According to the use of Sensor in RS

Arial Camera Single-lens Multi lens Strip camera

Electronic Camera

Multi-Spectral Scanner (MSS)

Whiskbroom MSS Push broom MSS

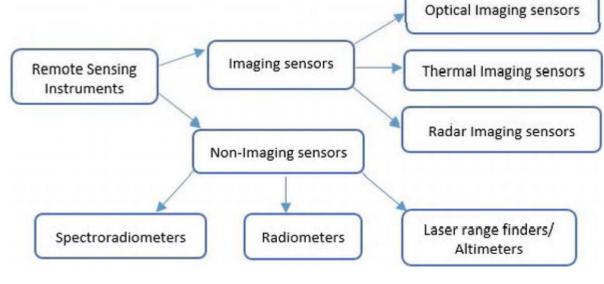
Example, The use in:

Landsat 1, 2, and 3 carrying a multispectral scanner (MSS); Landsat 4 and 5 carried a Thematic Mapper sensor (TM). Landsat 7 carries an Enhanced Thematic Mapper (ETM). Landsat 8 carries the Operational Land Imager (OLI).

Thermal Scanner

Microwave Sensor

RADAR L D A R *Microwave Scanning Radiometer*


> Remote Sensing Types

RS Data Types

Types of Remote Sensing Systems

- □ Visual Remote Sensing System such as human visual system
- Optical Remote Sensing
- Infrared Remote Sensing
- Microwave Remote Sensing
- Radar Remote Sensing
- □ Satellite Remote Sensing
- Airborne Remote Sensing
- Acoustic and near-acoustic remote sensing

karunakaranakniidev@gmail.com Phone: 9847231604 karunakaranakhildev@gmail.com

RS Processing Software

Example

- ERDAS Imagine
- ENVI : Environment for Visualizing Images
- $ILWIS: \ensuremath{\mathsf{Integrated}}$ Land and Water Information System
- Arc GIS
- Q GIS

Agencies for RS Data

Name 🗢	Status 🗢	Agency 🗢	Launch [note 1] 🕈
ALOS-2	Active	JAXA	2014
Alsat-2A and 2B	Active	Algerian Space Agency (ASAL)	2016
<u>Amazônia-1</u>	Active	Brazil's National Institute for Space Research (INPE)	2021
Aqua	Active	NASA	2002
ASNARO-2	Active	JAXA	2018
Aura	Active	NASA	2004
Badr-B	Active	Pakistan's Space and Upper Atmosphere Research Commission (SUPARCO)	2001
CALIPSO	Active	NASA and CNES	2006
Cartosat-1	Active	Indian Space Research Organization (ISRO)	2005
Cartosat-2A and 2B	Active	ISRO	2007
Cartosat-2C, 2D, 2E, and 2F	Active	ISRO	2016
Cartosat-3	Active	ISRO	2019
CBERS-4	Active	China National Space Administration (CNSA) and INPE	2014

Phone: 9847231604

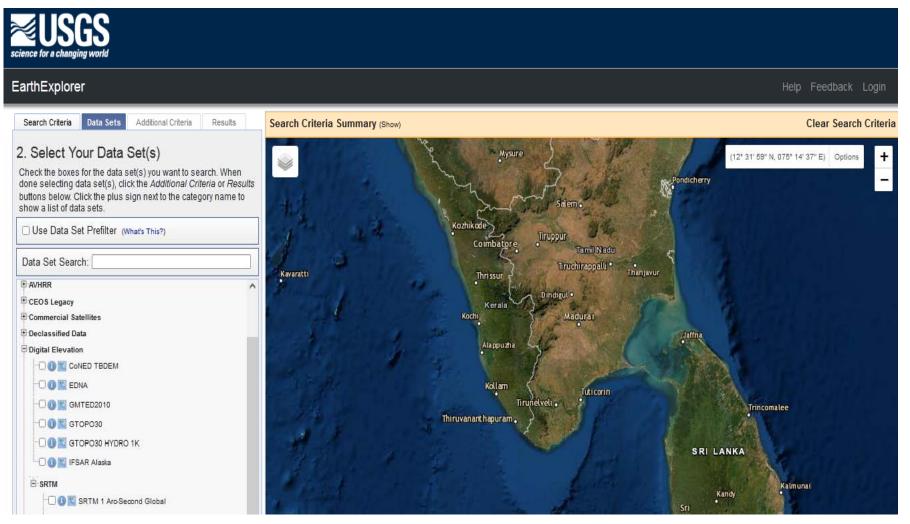
Chollian 1, 2A, and 2B	Active	KARI	2010	GOES-16, -17	Active	NASA	2016	
CloudSat	Active	NASA	2006	GRACE-FO Active		NASA	2018 ^{[13][14]}	
COSMO-SkyMed 1 to 4	Active	Italian Space Agency (ASI)	2007	GOSAT	Active	JAXA	2009	
CryoSat-2	Active	ESA	2010	Himawari 8 and 9	Active	Japan Meteorological Agency	2014	
CYGNSS	Active	NASA	2016	ICESat-2	Active	NASA	2018	
DSCOVR	Active	NASA	2015	IMS-1	Active	ISRO	2008	
DubaiSat-1 and 2	Active	Mohammed bin Rashid Space Centre (MBRSC)	2009	ISS	Active	NASA, Roscosmos, JAXA, ESA, and CSA	1998	
Elektro-L No. 1, 2, and 3	Active	Russia's Roscosmos	2011	Jason-3	Active	NASA and CNES	2016	
Eangrain 2D to 44	Active	China Meteorological	2006	KhalifaSat	Active	MBRSC	2018	
Fengyun 2D to 4A	Active	Administration	2006	KOMPSAT-2	Active	KARI	2006	
Formosat-5	Active	Taiwan's National Space Organization (NSPO)	2017	KOMPSAT-3, 3A, and 5	Active	KARI	2012	
Gaofen-2	Active	CNSA	2014					
Gaofen-3	Active	CNSA	2016	LAGEOS-1 and 2	Active	NASA	1976	
GOES-16 and 17	Active	NASA	2016	Landsat-7	Active	NASA and USGS	1999	
	Active		2010	Landsat-8	Active	NASA and USGS	2013	
Gokturk-1	Active	Turkish Ministry of National Defense	2016	Landsat-9	Active	NASA and USGS	2021	
Gokturk-2	Active	Turkish Ministry of National Defense	2012	Megha-Tropiques	Active	CNES and ISRO	2011	
GPM	Active	NASA and JAXA	2014	 Meteor-M No. 1 and 2 	Active	Roscosmos	2009	

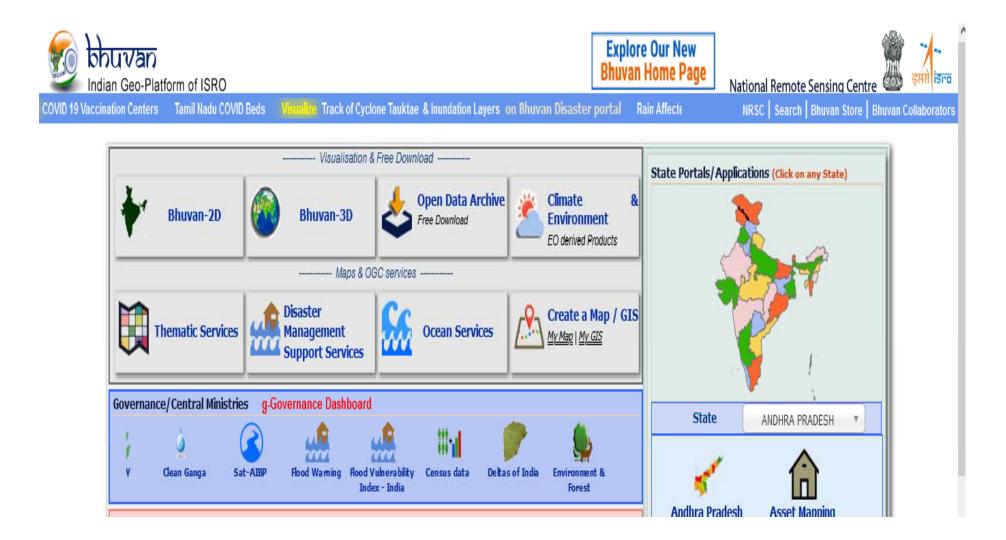
Meteosat 8	Active	EUMETSAT	2002	Resourcesat-1 and	Active	ISRO	2003
MetOp A, B, and C	Active	NASA, ESA, and NOAA	2006	2 Resurs-P No.1	Active	Roscosmos	2013
Mohammed VI-A	Active	Arianespace and Morocco	2017	and 2 SAOCOM	Active	CONAE	2013
and VI-B				SARAL	Active	ISRO	2013
NigComSat-1R	Active	NASRDA	2009				
NigeriaSat-1 and 2	Active	NASRDA	2003	Sentinel-1A and B	Active	ESA	2014
NOAA-15, 18, and 19	Active	NASA, ESA, and NOAA	1998	Sentinel-2A, B, and C	Active	ESA	2015
NOAA-20	Active	NASA and NOAA	2017	Sentinel-3A and B	Active	ESA	2016
Oceansat-2	Active	ISRO	2009				
OCO-2	Active	NASA	2014	Sentinel-6	Active	ESA	2020
PakTES-1A	Active	SUPARCO	2018				
Paz	Active	Spain's Instituto Nacional de Técnica Aeroespacial	2018	SMAP	Active	NASA	2015
Pleiades 1A and	Active	CNES	2011	SORCE	Active	NASA	2003
1B				Suomi NPP	Active	NASA	2011
PRISMA	Active	Italian Space Agency (ASI)	2019	TanDEM-X	Active	DLR	2010
PROBA-V	Active	ĒŠĀ	2013	Terra	Active	NASA	1999
PRSS-1	Active	SUPARCO	2018	TerraSAR-X	Active	DLR	2007
RCM	Active	CSA	2019	THEOS	Active	GISTDA	2007
RADARSAT-2	Active	CSA	2007				
RASAT	Active	TÜBITAK-UZAY	2011	TIMED	Active	NASA	2001
				VNREDSat-1A	Active	VAST	2013

40

karunakaranakhildev@gmail.com Phone: 9847231604

Prominent Fame RS Providers


- USGS Platform Earth Explorer
- ISRO Bhuvan
- JAXA Japan Aerospace Exploration Agency
- ASF Alaska Satellite Facility


Prominent Satellite Data

Landsat – TM 5, 6, 7 8 (TIRS OLI) SRTM – Shuttle Radar Topography Mission ASTER - Advanced Spaceborne Thermal Emission and Reflection Radiometer CARTOSAT -LISS III, IV - Linear Imaging Self-Scanning Sensor Sentinel A & B World View – Commercial

Phone: 9847231604

USGS EarthExplorer https://earthexplorer.usgs.gov

Applications of RS for DM

Mostly RS depends upon Sensor based Applications

By Users

karunakaranakhildev@gmail.com Phone: 9847231604

Example Optical sensors Application of RS

	Panchromatic systems	Multispectral systems	Hyperspectral systems
Spectral range (nm)	~430-720	~430-720 ~750-950	~470–2000
Satellites	QuickBird, SPOT, IKONOS	SPOT, QuickBird, IKONOS	TRW Lewis, EO-1
Spectral band	Monospectral, black and white, gray-scale image	Several spectral bands	10 to 100 of spectral bands
Spatial resolution	Submeter	Up to 1–2 m	Up to 2 m
Applications	Earth observation and reconnaissance applications	Red-green-blue (true color): visual analysis; Green-red-infrared: vegetation and camouflage detection; Blue-NIR-MIR: visualizing water depth, vegetation coverage, soil moisture content, and the presence of fires all in a single image Phone: 9847231604	 (i) Agriculture; (ii) eye care; (iii) food processing; (iv) mineralogy; (v) surveillance; (vi) physics; (vii) astronomy; (viii) chemical imaging; (ix) environment

Thermal IR Applications of RS

Sensor	Operational wave band	Definition	Satellites sensors	Applications
IR imaging radiometer	UV, mid-to-far- infrared, or microwave	Measures the intensity of electromagnetic radiation	ASTER	Volcanological, mineralogical, and hydrothermal studies, forest fires, glacier, limnological and climatological studies and DEM
Imaging spectroradiometer	Infrared	Measure the intensity of radiation in multiple spectrums	MODIS, ASAS, IRIS	Sea surface temperature, cloud characteristics, ocean color, vegetation, trace chemical species in the atmosphere
Infrared imaging camera	Mid-far infrared	Measure reflected energy from the surface		Volcanology, determining thunderstorm intensity, identifying fog and low clouds

https://www.intechopen.com/chapters/57384

Radar (Microwave) Applications of RS

Band	Frequency (GHz)	Wavelength (cm)	Key characteristics
Ka	40-27	0.75-1.11	Usually for astronomical observations
К	27–18	1.11–1.67	Used for radar, satellite communications, astronomical observations, automotive radar
Ku	18-12	1.67-2.5	Typically used for satellite communications
Х	12.5-8	2.4-3.75	Widely used for military reconnaissance, mapping and surveillance
С	4-8	3.75-7.5	Penetration capability of vegetation or solids is limited and restricted to the top layers. Useful for sea-ice surveillance
S	4-2	7.5-15	Used for medium-range meteorological applications, for example, rainfall measurement, airport surveillance
L	2–1	15–30	Penetrates vegetation to support observation applications over vegetated surfaces and for monitoring ice sheet and glacier dynamics
Р	1-0.3	30–100	So far, only for research and experimental applications. Significant penetration capabilities regarding vegetation canopy, sea ice, soil, and glaciers karunakaranakhildev@gmail.com
			46

Non Imaging Sensors Applications of RS

Sensor	Operational wave band	Definition	Application	
Radiometer	Ultraviolet, IR, microwave	To measure the amount of electromagnetic energy present within a specific wavelength	surface and	
Altimeter	IR, microwave/radiowave, sonic	range To measure the altitude of an object above a fixed level	Mapping ocean-surface topography and the hills and valleys of the sea surface	
		To measure the spectral		
Spectrometer	Visible, IR, microwave	content of the incident electromagnetic radiation	Multispectral and hyperspectral imaging	
Spectro-radiometer	Visible, IR, microwave	To measure the intensity of radiation in	Monitoring sea surface temperature, cloud characteristics, ocean	
		multiple spectrums	chemicarspecies, in the	
	karunakarana	khildev@gmail.com	atmosphere	

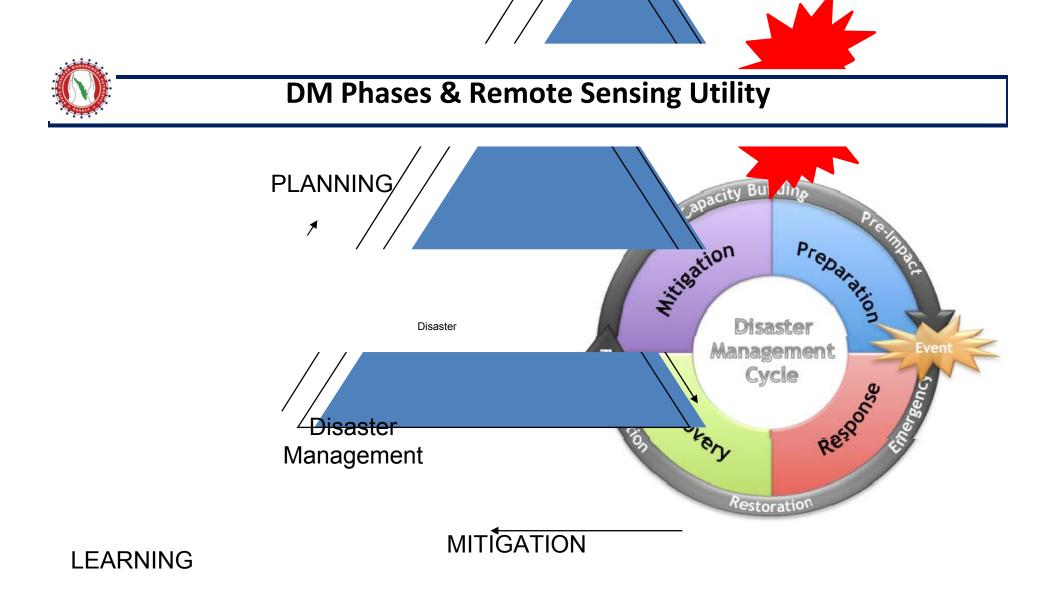
Sensor	Operational wave band	Definition	Application
LIDAR	Ultraviolet, visible, NIR	To measure distance and intensity Doppler LIDAR: measure the wave number for speed; Polarization effects of LIDAR: shape	Ocean, land, 3D topographic mapping Meteorology, cloud measurements, wind profiling and air quality monitoring
Sonar	Acoustic	Measure the distance to an object; determine the depth of water beneath ships and boats	Navigation, communication and security (e.g., vessels) and underwater object detection. For example, handheld sonar for a diver
Sodar	Acoustic	As a wind profiler, sodar systems measure wind speeds at various heights above the ground and the thermodynamic structure of the lower layer of the atmosphere	Meteorology: atmospheric research, wind monitoring (typically in a range from 50 to 200 m above ground level)
A radio acoustic sounding system (RASS)	Radio wave and acoustic wave	Measuring the atmospheric lapse rate using backscattering of radio waves from an acoustic wave front to measure the speed of sound at various heights above the ground	Is added to a radar wind profiler or to a sodar system

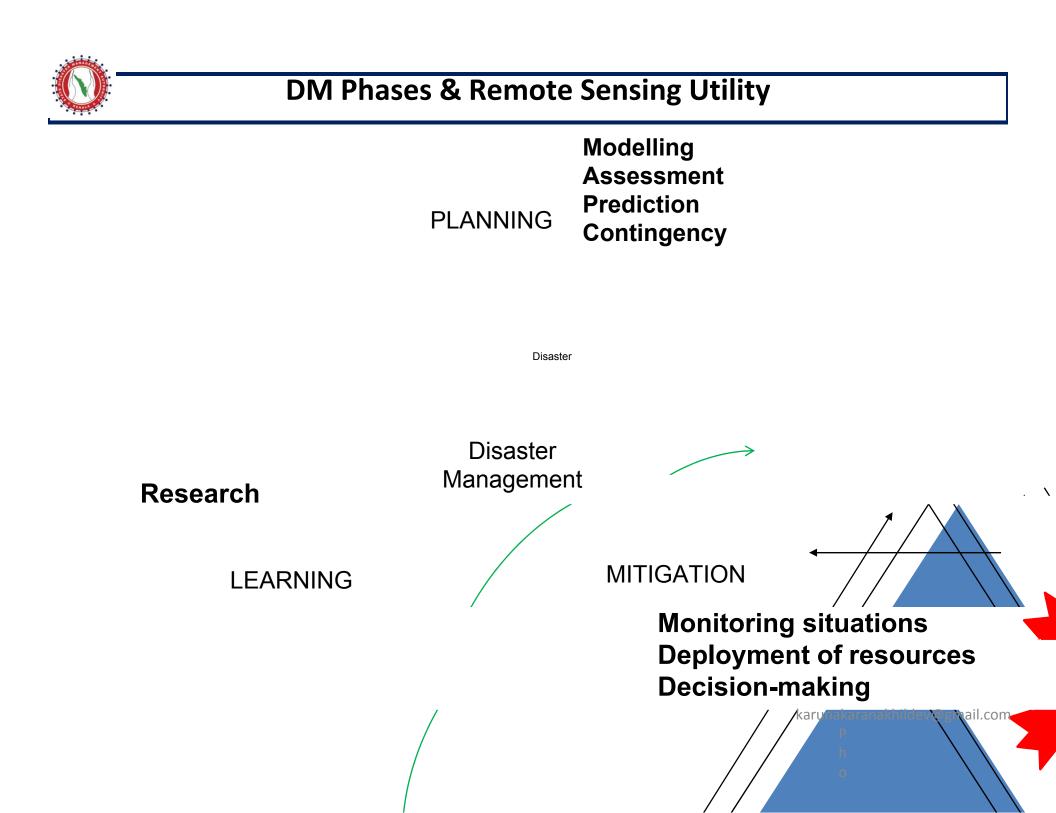
Commonly used RS satellites

Mission	Country	Launch year	Sensors	Height of orbit (km)		Revisit (day)	Channels	Spatial resolution
Landsat	USA	1972,	Panchrom	705	185, 183	16	7–11	120 m,
		1975,	atic and					100 m,
		1978,1982	multispect					60 m,
		,	ral sensor					30 m,
		1984,1993						15 m
		,						
		1999,2013 , 2020						
SPOT	USA	1986,	Imaging	694	60	1–3	Panchrom	2.5 m,
		1990,	spectrorad				atic, B, G,	5 m, 10 m,
		1993,	iometer				R, NIR	20 m
		1998,						
		2002,						
		2012						
ERS	ESA	1991,	IR	er, SAR		782–785	5–100 km	
		1995	radiomete				(AMI) -	
			r,				500 km(ATS	SR)
			microwav					
			e sounder,					
			Radiomet		karunaka	ranakhildev@g	mail com	51
						08/177316		TC

3, 35, 336 SAR

26 m
across
t
r
а
С
k
а
n
d
6
_
3
0
m
along
t
r
а
С
k

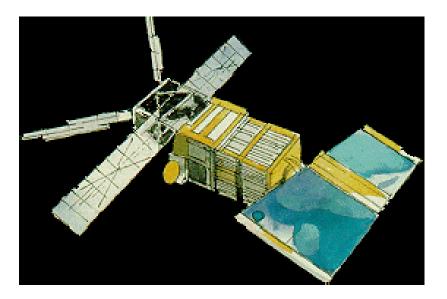

Commonly used RS satellites


Mission	Country	Launch year	Sensors	Height of orbit (km)		Revisit (day)	Channels	Spatial resolution
ADARSA T	Canada	1995, 2007,	SAR	793– 821 <i>,</i>	45–100, 18–500,	1	SAR	8– 100 m,
		2018		798, 592.7	5–500			3– 100 m, 3– 100 m
MODIS	USA	1999, 2002	Imaging spectror adiome ter	705	2330	1	36	1000 m, 500 m, 250 m
IKONOS	USA	1999	Imaging spectror adiome	681	11.3	3	Panchro ter	Panchro

, G, R,NIR matic:80 cm B, G, R,NIR:3.2 m

Mission	Country	Launch year	Sensors	Height of orbit (km)		Revisit (day)	Channels	Spatial resolution
QuickBird	USA	2000, 2001	Imaging spectrorad iometer	482, 450	16.8–18	2.4–5.9	Panchrom atic, B, G, R, NIR	Panchrom atic:65 cm /61 cm B, G, R, NIR:2.62 m/2.44 m
Envisat	ESA	2002	ASAR, MERIS, AATSR, RA-2, MWR, GOMOS, MIPAS, SCIAMA CHY, DORIS, LRR	790	1150 km, 100 km, 400 km	35 days	15 bands (VIS, NIR), C- band	300 m, 30–150 m
GeoEye	USA	2008	Imaging spectrorad iometer	681	15.2	8.3	Panchrom atic, B, G, R, NIR	Panchrom atic:41 cm B, G, R, NIR: 1.65 m

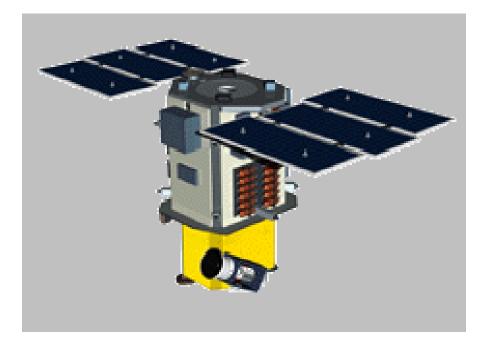
Mission	Country	Launch year	Sensors	Height of orbit (km)	Swath (km)	Revisit (day)	Channels	Spatial resolution
WorldVie w	USA	2007 2009 2014 2016.9	Imaging spectrora diometer, Laser altimeter	496, 770, 617, 681	17.6 km 16.4 km 13.1 km 14.5 km	1.7 1.1 <1 3	Panchrom atic; Panchrom atic and eight multispect rum; Panchrom atic and eight multispect rum; Panchrom atic, B, G, R, NIR	Panchrom atic 0.5 m; Panchrom atic and stereo images:0. 46 m multispect ral: 1.84 m; Panchrom atic 0.34 m and multispect ral 1.36 m
Sentinel 1–6	ESA	2014, 2015, 2016, 2017, 2021	Radar and super- spectral imaging	693, 786, 814	250 km 290 km, 250 km,	12, 10, 27	C-SAR, 12 bands (VIS, NIR, SWIR), 21 bands (VIS, NIR), S-band & X-band	5–20 m, 5–40 m, 10 m & 20 m & 60 m



Public relations

- European Remote Sensing Satellite
- all weather 25-500 meter land and sea observations, radar and Synthetic Aperture Radar
- 3 dimensional mapping, oil spill detection, flood extent, damage assessment, night coverage

- Japanese Earth Resources Satellite
- all weather 18 meter land and sea observations
- 3 dimensional mapping, oil spill detection, flood extent, damage assessment.



Applications of RS data for DM

- Launched in 1998
- visual 1 metre land observations
- high-resolution mapping, infrastructure identification, terrain analysis

QuickBird

Fires

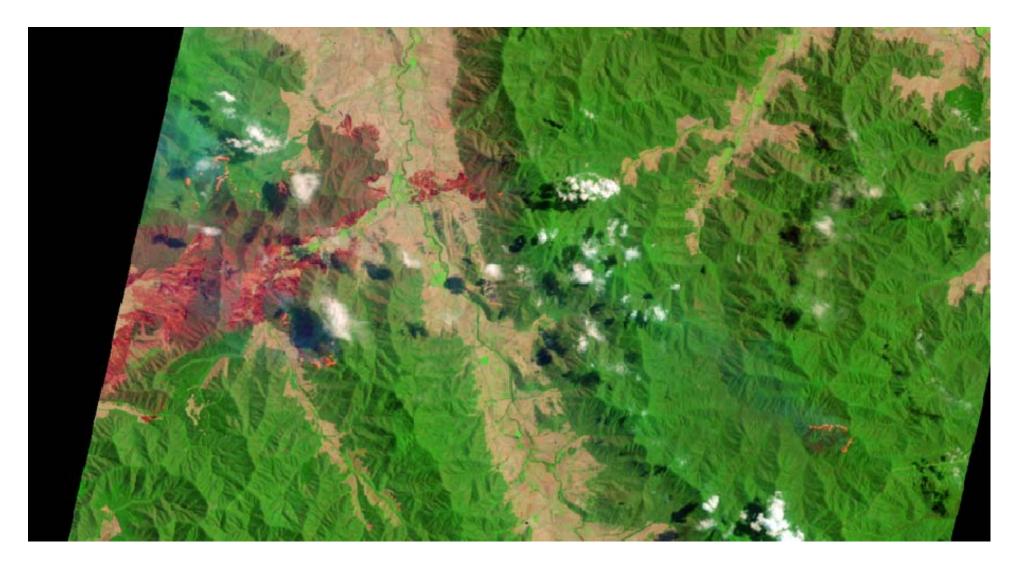
Fire detection by satellite provides a highly efficient means of detecting and eradicating forest fires without large numbers of ground-based workers

Thermal infrared imagery shows "hotspots" that may be distinguished from clouds of similar albedo

Fires

A fire detection and management system should have the following aims:

- A measure of the geographical limits of the fire-front
- An estimate of fire intensity
- Monitoring of burnt area to look for latent fires
- Mapping of burnt areas to aid restoration


(Barducci et al. 2002)

S.E Australian Fires February 2009 NASA Earth Observatory http://earthobservatory.nasa.gov/NaturalHazards/

S.E Australian Fires (10_{th} February 2009) NASA Earth Observatory

http://earthobservatory.nasa.gov/NaturalHazards/



From the Advanced Land Imager on NASA's Earth Observing-1 satellite

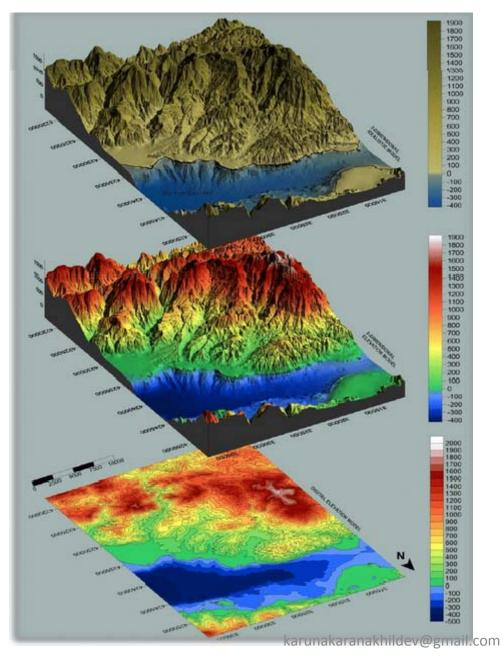
Thermal Infrared (TIR) analysis of scene showing hot anomalies

Flooding

Floods are easily seen from space particularly over very large areas. Sometimes the view of the ground can be obscured by clouds - not a problem if the flooding was due to a large storm system

GIS models allow us to estimate the risk of flooding before it happens. Monitoring by both NOAA and Meteosat helped disaster mitigation activities in Mozambique during 2001

Flooding


A combination of both optical and radar remote sensing can provide a model for estimating likelihood of floodplain inundation (Townsend and Walsh, 1998)

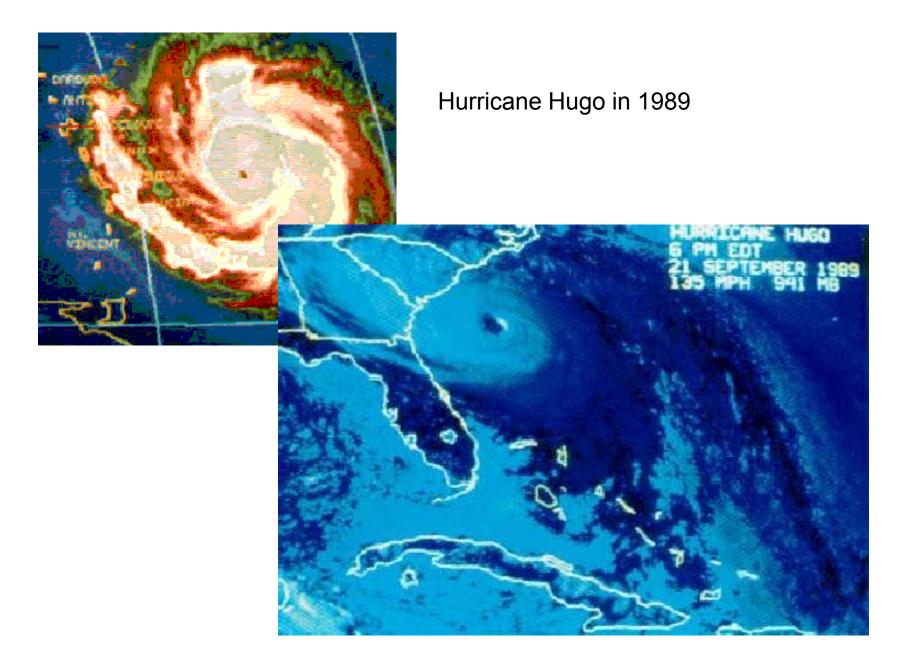
Often, detailed hydrological models are as important as the remotely sensed data to estimate risk and undertake effective post-disaster management

Flooding

While the 'before' image was taken by the Landsat 8 satellite's operational land imager on February 6, the 'after' one was clicked by the multispectral instrument on the European Space Agency's Sentinel-2 satellite last Wednesday(Photos: Earth Observatory/Nasa)

DEM Flood

Phone: 9847231604

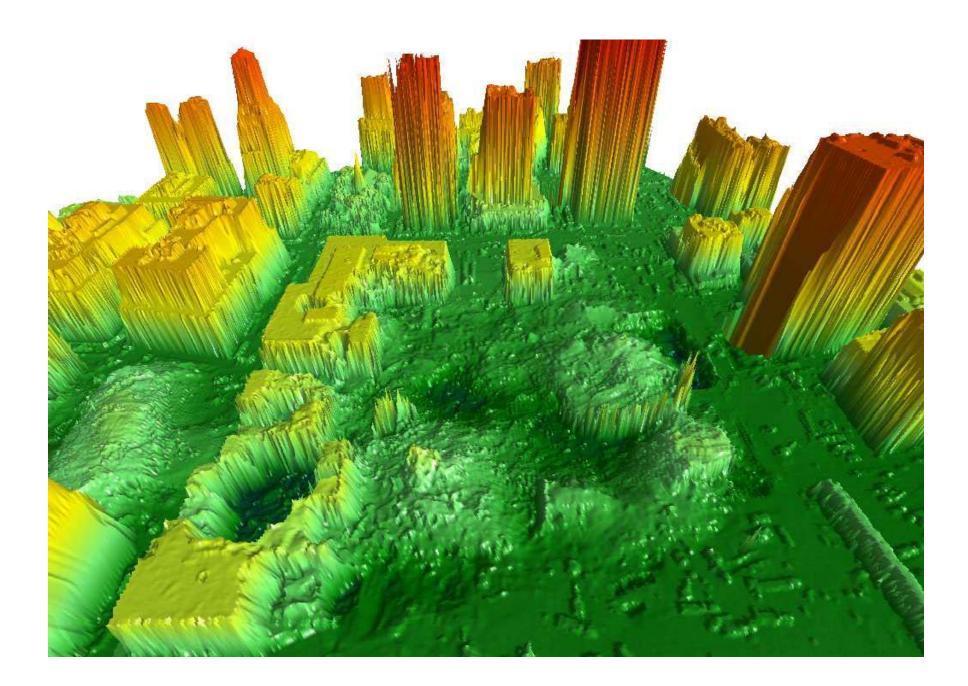

Extreme Weather

Many natural disasters result from extreme weather events such as hurricanes, typhoons and cyclones.

These meteorological phenomena are typically large-scale and can be seen from space.

Satellites allow us to track these phenomena, determine the likelihood of them affecting human population and hence undertake mitigation activities.

The role of remote sensing for support of geoengineering activities for mitigation is discussed by Bauer *et al.* 1999



Terrorism

Following the assault on the World Trade Center in New York on september 11th in 2001, the Ikinos and NOAA satellites were used to obtain detailed images of the site affected.

Lidar radar sweeps were used to "cut through" dust and build up a picture beneath

RS data helped inform disaster management crews

Tsunami

Like coastal flooding, Tsunami events may be modelled and within a GIS.

Complex computational fluid dynamics (CFD) requires very detailed bathymetric and topographic data retrieved from remote sensing missions. Earthquakes and landslides that contribute to tsunami formation can be assessed by different remote sensing techniques.

Earthquakes

The aftermath of an earthquake is clearly highly visible from space using high resolution satellites and aerial photography

Detailed image analysis can assist ground crews to locations where electrical pylons, ruptured gas/oil pipes or urban fires require immediate attention.

(See Wu *et al*. 2000)

Japan IMAGE RESOLUTION COMPARISON - The collapsed part of the Hanshin expressway -

IFOV=2m

IFOV=8m


IFOV=4m

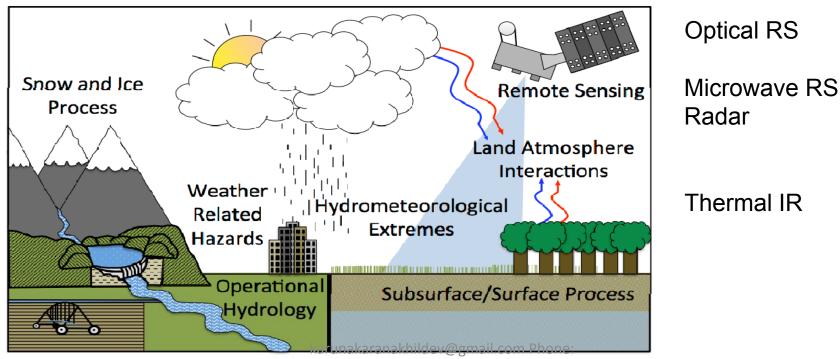
Source:Aerial Photo(Nakanihon) Date:1995.1.18

Image Processing by TRIC

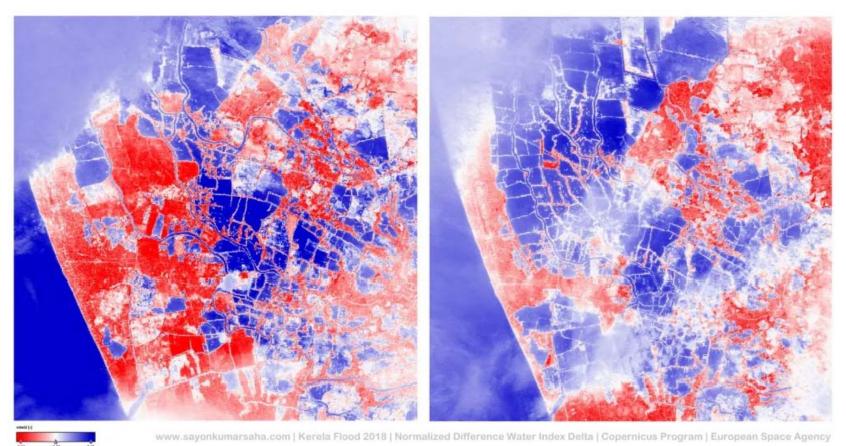
IFOV=1m

115. Site of Chernobyl Nuclear Disaster (SMP 1987).

Chernobyl reactor disaster


Ukraine

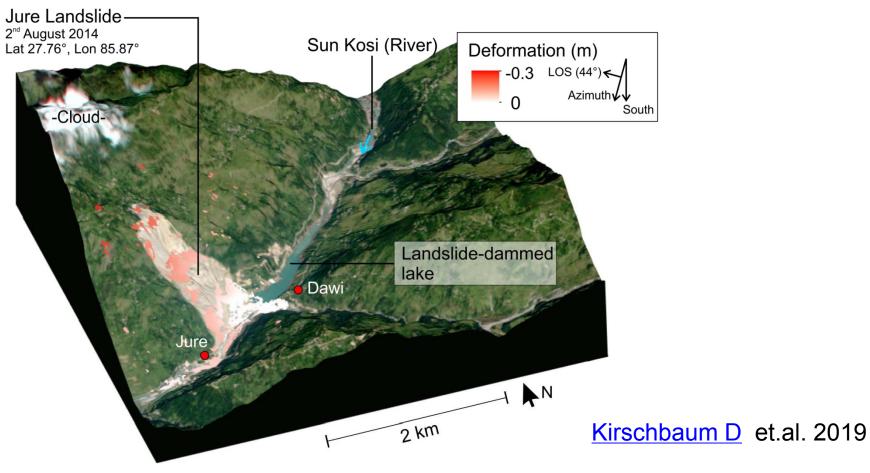
Category 1- Hydro Meteorological Disasters.


- a) Flood
- b) Drought
- c) Costal erosion
- d) Thunder and Lightening
- e) Cyclone and Storms etc.

RS Technique

9847231604

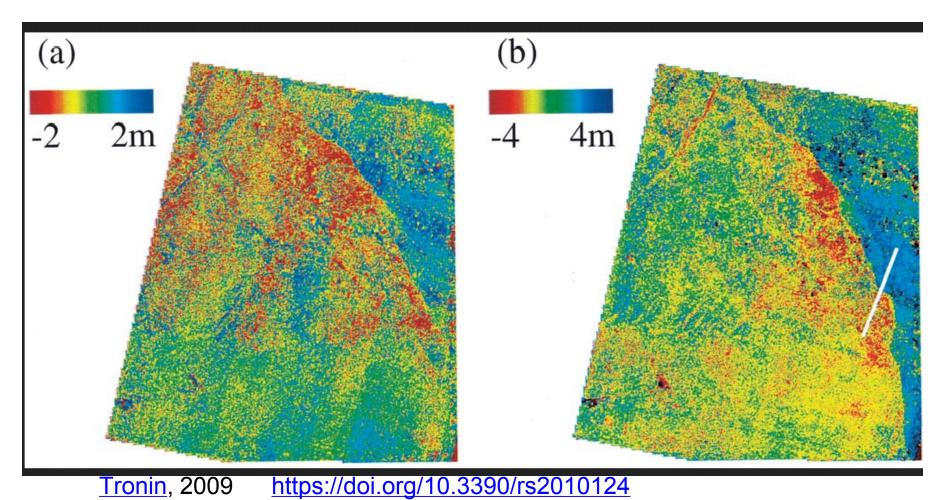
Flood


Rise in Water Level before and after the flood spotted by computing Normalized Difference Water Index (using Python, GDAL & SNAP) on multi-spectral satellite imagery (20kmx 20km in the image) of Kerala sensed and ingested by Sentinel-2A of <u>ESA</u>.

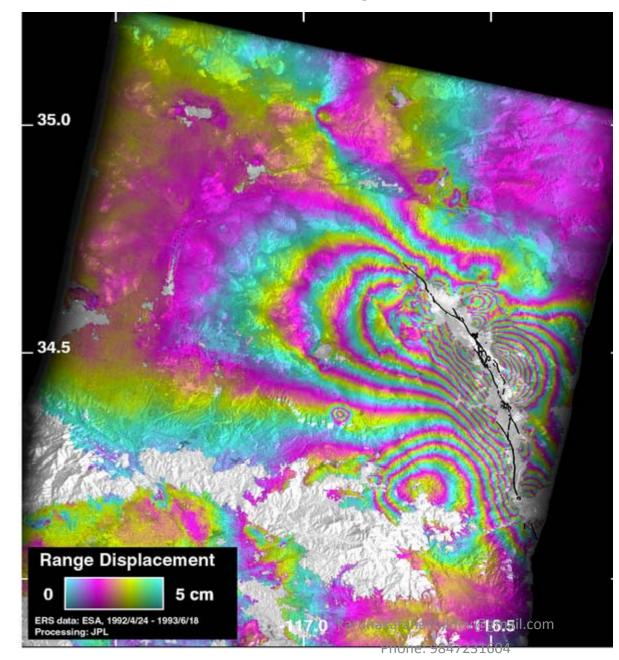
http://www.sayonkumarsaha.com/satellite-image-kerela-flood/

karunakaranakhildev@gmail.com

Category 2- Geologically Related Disasters


- a) Landslides and Mudflows
- b) Earthquakes
- c) Dam failures
- d) Tsunami

https://www.frontiersin.org/articles/10.3389/feart.2019.00197/full


Earthquake

Horizontal ground displacement induced by the Landers earthquake measured from SPOT2

karunakaranakhildev@gmail.com

Phone: 9847231604

Observed co-seismic interferogram for the Landers earthquake

1992 *Landers earthquake* occurred on Sunday, June 28

<u>Tronin</u>, 2009 <u>https://doi.org/10.33</u> <u>90/rs2010124</u>

Category 3- Chemical Industrial and Nuclear Related Disasters

- a) Leakage of hazardous materials at the time of their manufacture,
- processing and transportation. Disasters due to manufacture, storage, use and transportation of products,
- b) Pesticides etc and waste produced during the manufacturing process etc.

Category 4- Biological Related Disasters

- a) Epidemics
- b) Cattle epidemics
- c) Fish diseases
- d) Pest attacks etc

Category 5- Man-Made Disasters

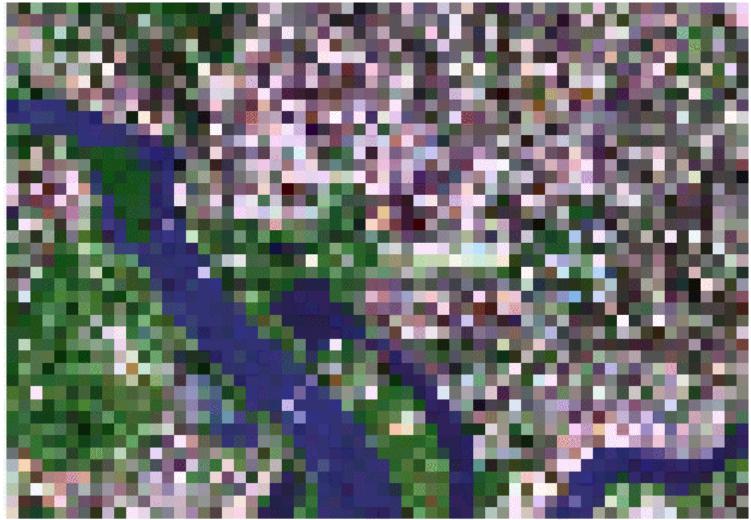
- a) Forest fire
- b) Urban fire
- c) Village fire
- d) Festival related disasters
- e) Road, Rail and Air Accidents
- f) Boat capsizing
- g) Oil spill
- h) Major building collapse
- i) Serial Bomb blast
- j) Illicit Liquor Tragedy
- k) Drug abuse

- I) Drowning
 - Tanker lorry mishaps
- n) Pollution (water, air and soil)
- o) Family suicides
- p) Environmental disasters
- q) Communal riots
- r) Stampede etc

m)

Advantages of RS

- Real time data
- Area coverage
- Variety of themes
- Repetitive coverage
- Data of inaccessible area
- Different purposes and applications
- Digital data


Challenges of RS

- Continuity of services
- Explore new areas of application
- Human training
- Strengthen infrastructure
- International participation
- Global market
- Resolution, Temporal resolution and Cloud cover
- Storing of data
- Management of data

Advantages and Disadvantages of RS

Resolutions Play a vital role in RS

100 meter resolution

karunakaranakhildev@gmail.com Phone: 9847231604

Advantages and Disadvantages of RS

Resolutions Play a vital role in RS

30 meter resolution

karunakaranakhildev@gmail.com Phone: 9847231604

5 meter resolution

karunakaranakhildev@gmail.com

Location UnKnown

Phone: 9847231604

Resolutions

Spectral

Temporal (revisits – Swath change)

Radiometric

Mal function of Sensors

(Landsat 7 – Scan Line Error)

Questions?

karunakaranakhildev@gmail.com Phone: 9847231604

